Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:
общая лексика
ультраидеал
['ʌltrə]
прилагательное
общая лексика
придерживающийся крайних взглядов
крайний
экстремистский
существительное
['ʌltrə]
общая лексика
человек крайних взглядов
ультра
экстремист
In mathematics, particularly measure theory, a 𝜎-ideal, or sigma ideal, of a sigma-algebra (𝜎, read "sigma," means countable in this context) is a subset with certain desirable closure properties. It is a special type of ideal. Its most frequent application is in probability theory.
Let be a measurable space (meaning is a 𝜎-algebra of subsets of ). A subset of is a 𝜎-ideal if the following properties are satisfied:
Briefly, a sigma-ideal must contain the empty set and contain subsets and countable unions of its elements. The concept of 𝜎-ideal is dual to that of a countably complete (𝜎-) filter.
If a measure is given on the set of -negligible sets ( such that ) is a 𝜎-ideal.
The notion can be generalized to preorders with a bottom element as follows: is a 𝜎-ideal of just when
(i')
(ii') implies and
(iii') given a sequence there exists some such that for each
Thus contains the bottom element, is downward closed, and satisfies a countable analogue of the property of being upwards directed.
A 𝜎-ideal of a set is a 𝜎-ideal of the power set of That is, when no 𝜎-algebra is specified, then one simply takes the full power set of the underlying set. For example, the meager subsets of a topological space are those in the 𝜎-ideal generated by the collection of closed subsets with empty interior.